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A model for the high Reynolds number flow in a fixed bed of parallel cylinders of radius d and mean
separation L is described, and predictions for the diffusion coefficients of a contaminant, passively ad-
vected by the flow, are provided in the dilute limit d /L —0. The longitudinal diffusion appears to be
dominated by the wakes and to be much larger than the transversal part, which is dominated by tur-
bulence. The basic result is that increasing the spacing between cylinders results in an increase rather

than in a decrease of the amount of diffusion, with scaling (dL?

)!3 both in the longitudinal and in the

transversal directions. The diffusion becomes normal at length scales of the order of L2/d.

PACS number(s): 47.27.Qb, 05.40.+j

I. INTRODUCTION

There are several circumstances in natural environ-
ments in which one has to deal with high Reynolds num-
bers flows in very complicated or even random
geometries. A river flowing through a brush of reeds and
the wind blowing in a forest are two typical examples, in
which the complicated geometry is provided by a random
distribution of cylindrical obstacles. An important prob-
lem, with practical application to the study of contam-
inants in natural environments, is the dynamics of passive
scalars. Of course, during the years, a huge amount of
work has been done on turbulent diffusion in such com-
plex environments (see, for instance, [1] for a review).
The basic difficulty is that one has to deal with a situation
of inhomogeneous turbulence in which there are very
complicated interactions between the mean flow and the
turbulent fluctuations. As regards the particular issue of
contaminant dynamics, this problem is made particularly
interesting by the coexistence and interaction of two
different mechanisms for dispersion, such as turbulence
and the random environment. This paper is devoted to
the study of this interaction and to provide some esti-
mates for the diffusion constant in turbulent flows
through fixed, dilute beds of infinitely long, parallel
cylinders.

Flows in fixed beds have long been considered, in the
limit of zero Reynolds numbers, as a model for porous
media. What one is dealing with in this case is a Stokes
flow, which is fully determined in terms of the no-slip
boundary conditions on the surface of the obstacles. The
simplest possible description of this problem is that of
Brinkman [2], in which the effect of the obstacles is con-
sidered in an average sense as an additional drag term in
the Stokes equation. In the work of Hinch [3], a formal
derivation of this approximation was obtained and later,
Koch and Brady [4] used the same formalism to derive
models of diffusion in porous media. More recently,
Kaneda [5] used the formalism of Hinch to calculate the
correction to the Brinkman equation produced by finite
inertia. This amounted to taking into account the pres-
ence of laminar wakes in which the flow is nonpotential.
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The transition to the high Reynolds number limit is
characterized by the wakes becoming turbulent. The
presence of turbulence makes the exact treatment of the
high Reynolds limit impossible. At the same time, the
complicated geometry makes an asymptotic analysis of
the kind “homogeneous-isotropic” turbulence impossible
as well. However, it is hoped that detailed information
on the structure of turbulence is not needed and that
what is really necessary are local estimates of the fluctua-
tion amplitude, and of the typical eddy size. Unfor-
tunately, this is not completely true, since some informa-
tion on the energy spectrum is needed to estimate the
eddy viscosity at small scales, which is necessary in turn
to calculate the velocity defect at various positions in the
wakes. It will turn out that the present model is able,
even within a simple mixing length approximation, to ob-
tain an estimate of the turbulent energy spectrum.

To go back to a simpler case of the Stokes flow, the
idea of Hinch was basically to calculate the modification
to the mean flow produced by a given obstacle, keeping to
lowest order, and in an average sense, the coupling with
the perturbation produced individually by each other
obstacle. This was essentially a mean field theory ap-
proach, in which the averages were carried on over an en-
semble of exact bed configurations. Keeping this mean
field effect produced the drag contribution to the flow
equation of the Brinkman approximation. In the large
Reynolds number limit, however, this is likely not to be
the only effect of a mean field analysis.

In a high Reynolds number regime, a first average over
turbulent fluctuations is necessary to separate out the
mean flow for a given exact bed configuration. Once this
is done, the mean flow will depend on an equation in
which the Newtonian viscosity is negligible compared to
the turbulent strain. Here, this turbulent strain will be
parametrized in terms of an eddy viscosity. When deriv-
ing the equation for the wake produced by a given obsta-
cle, the eddy viscosity will depend on the turbulence level
in the wake under examination and on the turbulence
from the other wakes. Hence, besides producing a drag
term, at high Reynolds numbers, the mean field effect of
the obstacles is a contribution to the eddy viscosity,
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which has to be taken into account when calculating the
wake profiles.

What is going to be derived here is a Brinkman ap-
proximation for high Reynolds number flows in fixed
beds of infinitely long cylinders. This is a limit that is
difficult to find realized in nature, but which is interesting
because it allows one to study the interaction among
different wakes in a purely two dimensional setting.
Likewise, any effect coming from the finite extension of
the bed perpendicularly to the cylinders will be disregard-
ed. The philosophy that will be followed is that of Hinch
[3], with the addition of a number of approximations and
assumptions, which are the following.

(1) High Reynolds numbers: the Reynolds number
Re~U,yd /vy, with U, the mean flow velocity, d the
cylinder radius, and v, the Newtonian viscosity is taken
large enough (i.e., Re>2000) so as to allow the wakes to
become fully turbulent and standard results about the
self-similar turbulent wake regime [6] to be at least ap-
proximately applicable.

(2) Turbulence model: it is assumed that the mean ve-
locity gradients determine the turbulence levels and that
the characteristic length scales of these gradients deter-
mine the size of the largest eddies. So, a velocity varia-
tion AU across a distance / is assumed to generate a tur-
bulent velocity v, of the same order of magnitude and on
the same scale of AU. This is essentially a mixing length
approximation. The effect of turbulence on the mean
flow is parametrized in terms of a scale dependent eddy
viscosity, defined in terms of the turbulent velocity
difference at scale I: v; through the equation
vi~[ [}dlI'I"*dv} /dI’']'/. This becomes asymptotic for
I— o to the standard definition of eddy viscosity:
v ~Vrleaqy, With lo4q, the characteristic size of the ener-
gy containing eddies.

(3) The drag: Each cylinder is taken to produce a drag
per unit length given by Ac ~ U?d, which is equivalent to
saying that any fluid element coming in front of a
cylinder is virtually stopped by it. Summing over unit
area, this produces a drag coefficient in the Navier-Stokes
equation: £~ Uyd /L2 where L is the typical distance
between cylinders.

(4) Mean field theory: this is the basic working as-
sumption of the model. As in Hinch [3], this requires
that the bed be dilute, with separation distances large
compared with the cylinder radii. What it means is that
correlations between velocity disturbances pro-
duced by different cylinders can be treated in a perturba-
tive fashion. If v,, are the velocity disturbances pro-
duced by cylinders 1 and 2, to lowest order
(F[v,]1G[v,]1)=(F[v,1){G[v,]), where F and G are
generic functionals and ( ) is the combined average over
turbulent fluctuations and bed configuration. This ap-
proximation is meaningful when the wake produced by a
given cylinder is affected by the effect of the wakes from
many cylinders upstream, so that the global effect can be
considered in an average sense [7].

This paper is organized as follows. In the next section
the equations governing the diffusion of a passive scalar
in the random bed are introduced and all basic quantities
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defined. It will appear that an important role is played by
the mean velocity profile in a wake (averaged over both
bed configurations and time). In Sec. III, the average
wake profile and turbulence levels are derived using the
mean field approximation. Estimates for the diffusion
coefficients (including the skewness) are presented in Sec.
IV. Section V contains a discussion of the results.

II. TRACER DYNAMICS

Consider a volume of water flowing with an average
velocity U, perpendicular to a fixed bed of infinitely long,
parallel cylinders, all with the same radius d. Let us take
a coordinate system with the x axis directed along the
mean flow and the cylinders along the z axis. The
cylinders are distributed with a density n(r)
=3,8(r—r;). Here of course, r; is the coordinate of the
ith cylinder. Following Hinch [3], we can introduce a
hierarchy of partial averages; let us indicate with { );; ...
the average over turbulence and over the position of all
cylinders but the ones at r;,r e that are kept fixed. In
this way, we can introduce the coarse grained density
fi: a=(n)=L"?% with L typical distance between
cylinders, and other statistical quantities, such as, for in-
stance, the conditional probability P(r,|r) to find a
cylinder in r, given the presence of another one in r,,
which is defined through the expression (n(r)),
=nP (r1|r).

The fluid velocity can be divided into a time indepen-
dent part U and a turbulent component v. Again follow-
ing Hinch [3], the time independent part can be expanded
in terms of contributions from higher correlations:

U(r)=Uy(r)+U () +Uy(r)+ - - -, (1a)
where
U(n)=3 U (r;Ir), Uy(r)=3Us(r,,1;lr), (1b)
i ij

and similar expressions for the higher order terms. The
term U,(r;|r) in Eq. (1b) is the disturbance to the velocity
field due to a cylinder in r;, disregarding the effect of all
the other cylinders. Similarly U2(r,-,rj|r) is the distur-
bance produced to U,(r;|r), by the presence of a cylinder
at r;, but disregarding the effect of all others. Notice that
to lowest meaningful order, from Egs. (1a) and (1b), one
has also

2
(U(r)); =Up+U(r;[1) +Uy(r; )+ Uy(r,,1;]r) .

The spatial inhomogeneity of the corrections to the mean
velocity, U,(r), i =1,2, ..., is a source of turbulence in
the problem, so that it is possible to expand v in a way
similar to that of (1a):

v(r,t)=v(r,t)t+vy(r,t)+ - - . (3)

In principle it would be possible to carry on a decomposi-
tion of v in terms of contributions from the individual
wakes, in the line of Eq. (1b), but this appears to be use-
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less, except near the cylinders, where the turbulence from
the wake dominates over that from the background.
Definitions similar to those given for the velocity are
adopted for the pressure P. The equations describing the
behavior of the various quantities appearing in Eqgs.
(1)—=(3) will be derived in the next section.

To lowest order, the diffusion of a tracer particle with
respect to the mean flow is calculated starting from the
equation
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the particle that at time ¢t =0 was at r, (Lagrangian coor-
dinate). An alternative would be to follow Koch and
Brady [4] and to write the fluid equations for the trans-
port of the tracer, with a diffusion term accounting for
the effect of turbulence and of the wakes. This is the
second moment of the tracer distribution starting from a
point source at an initial time. However, approximate,
analytical expression can be obtained for generic mo-
ments of the displacement r,, which could prove useful,

due to the non-Gaussian nature of the concentration

profiles seen in experiments [8]. If the contaminant den-

sity varies little on scales smaller than the cylinder sepa-

ration, it is possible to equate the average over tracer par-

ticles with the average over cylinder position with respect
(4)  to a given tracer particle. From Eq. (4), one obtains then
the expression for the mean drift:

<r1<t)>zfo’dtlfdzr'<n(r'>U1<r'lr<x1>)> : (5)

rlmzfo‘dtl vitr(e),t )+ [d2r'n(e)U(F[x() |,

where r(¢)=Uyt +r,(z). Complete information on the
evolution of the concentration of tracer particles p(r,)
could be obtained imposing conservation of probability:

p(r(ry,1),t)=p(ry,0), where r(ry,t) is the coordinate of  while for the next moment, one has

(rl(t)rl(t)>2fotdt1 fotdtl (vl(r(tl),tl)v,(r(tz),t2)>+fdzr’fdzr”(n(r’)n(r")Ul(r'lr(tl))Ul(r"|r(t2))) . (6)

The analysis can be simplified if the integrals in Egs. (5) and (6) are dominated by contributions at large distance from
the cylinders, in the range in which U, >> U, >> U, . In this case, the diffusion from the wakes [the piece proportional
y

to U,U, in Eq. (6)] is in the direction of the unperturbed flow U,. Using the following expression for the two-point den-
sity correlation:

(n(r)n(r'))=rd(r—r')+a’P(r|r') , 7
the part of the diffusion due to the wakes is given by
! t ’ (= ’ " - AP
(Ax(t)z)wzfodtlfodtzfdzr Jd¥"{asir —r)+a*[P(r'ir)— 1]}
dezrlfdzrzg(r’,rl,tl)g(r“,rz,tz)Ul(r’lrl)Ul(r”Irz) , (8)

where g(r',r,t) is the Green function for the tracer particle motion. For x —x'>>d, i.e., away from the cylinders, one
has x(t)=~U,t, while the transversal displacement y (¢)=~y,(¢) is mainly due to turbulent diffusion [the contribution
from the transverse drift U, is killed by a factor d /(x —x')]. This leads to a Green function in the form

¥y

8(x —Uyt) —y2/2D;1
Ey———— 4

glr,r,t)=——=
V27Dt

»

where D, is the turbulent diffusion at scale /, with / =1I(x —x') the width at r of a wake generated by a cylinder at r'. If
the cylinders are distributed at random, P(r’|r"’ )1, only when |r'—r1"'| << L, and the contribution proportional to 7 2
can be neglected in Eq. (8). An order of magnitude estimate of { Ax(¢)*)can be obtained by neglecting the transverse
diffusion in the expression for the Green function g, which is equivalent to taking r(¢z)=Ujt in Egs. (5) and (6), so that
¥1=y,. (In the analysis of Koch and Brady [4], this would correspond to calculating the one-cylinder disturbance to
density and fluid velocity, using unperturbed trajectories.) The physical basis of this approximation is that a fluid parti-
cle captured by the turbulent wake at a given time tends to remain inside it afterwards (the turbulent wake profile is
essentially the envelope of the most typical trajectories of the fluid elements entrained by the wake). We obtain there-
fore

(Ax(t)z)szﬁfoxmdxxfo Yax, [ ax' [Ty UG UL Ir) UL () ©)
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Similar calculations are carried on in the Appendix to
derive an expression for the skewness. Now, if the ap-
proximation x (z)=~U,t were relaxed, among the other
things, the term Uy 2 in (9) should be substituted by one
in the form

U+ U, +o)x'|x WUy + U, +v)x'|x,)]7 ! .

Since right behind the cylinders, U,+ U, —0 and there is
almost no turbulence, it appears that there is a possibly
important contribution to the transport from the very
near wakes, not taken into account by (9), which has the
form, first of a sink of contaminant, and then of a source,
as the contaminant is first trapped by the regions immedi-
ately behind the cylinders and then released. A discus-
sion of this effect will be presented in Sec. IV.

In order for Eq. (9) to make sense at all, the integrals to
the right hand must be dominated by the far wake region:
X;,—x'>>d. By conservation of momentum, the veloci-
ty gap U,(x —x')=U,(x'|x) and the wake width /(x)
are connected by the relation /(x)U,(x)=const, where
the deviation from equality is produced by the presence
of the drag and is negligible up to distances of the order
of I,=U,/§, with § the drag coefficient in the Navier-
Stokes equation (typically /,>>L). If I(x)~x?, with
¥ <1, it appears therefore that Eq. (9) is dominated by
the far wake. Power counting suggests that this is the sit-
uation also for higher moments. For an isolated cylinder,
at sufficient distance from the cylinder (x >20d), dimen-
sional analysis gives the result /(x) < V'dx [5], which sug-
gests that the condition ¥ <1 might be satisfied also in
the case of a cylinder bed. If this is true, it is the far
wake region that dominates diffusion. Notice that in the
absence of drag, the equality /(x)U,(x)=const is exact
and for a <1 the integrals in Eq. (9) [and (A3) in the Ap-
pendix] are divergent at infinity; the presence of the drag,
as in the Brinkman approximation [2], will set a cutoff for
these integrals at the scale /.

III. DETERMINATION OF THE WAKE PROFILE

The equations for the mean flow U, and the wake
profile U,(r’|r) are obtained from the Navier-Stokes
equation by substituting Eq. (1) and taking, in the first
case, a full average { ) and, in the second, a one-cylinder
average ( );. Using Eq. (2) leads then to the equations
for the mean flow and the wake profile, which at steady
state have the form

[UpV+E(r)—Vu(r)-V]U,=f—VPy(r) , (10

with f an external force to maintain steady state, and

{[U0+U1(r1|r)]'v+§(l’1|r)—VV(r1|r)'V}U1(l’1|r)
=—VP,(r,|r). (11

The drag terms £ and the eddy viscosities v, appearing in
Egs. (10) and (11), contain the contribution from tur-
bulence and all the higher order correlations. The mean
field assumption consists here of using for § and v their
lowest order expressions:
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§(r)=<fd2rln(r1)Uo~VU,(r,|r)> , (12a)
§(r1|r)=<fd2r,_n(r2)U1(r1Irz)-VUz(r1r2|1)> ., (2b)

1
and
Iu(r)-VUy(r)=(v;-Vv,) , (13a)
Ve, |0) VU, (r,l0) = (v Vv, (13b)

The only contributions to the integrals for the drag terms
in Egs. (12a) and (12b) come from the cylinder surfaces
[3]. In the case of a Stokes flow, the use of no slip bound-
ary conditions allowed the direct calculation of the drag
forces. In the present case, this would require us to study
the turbulent boundary layer on the surface of the
cylinders, which is beyond the capability of the model.
Experimental data for the case of an isolated cylinder [6]
indicate that the drag per unit length is approximately
equal to U (z,d, with d the cylinder radius. In our case, if
the cylinders are not too close, it is reasonable to assume
that the boundary layers on the surface of the cylinders
are not affected by the turbulence from the other
cylinders. Hence, introducing a coefficient a,~1, it is
possible to write

E(r)=£(r,Ir)~¢=aUyd /L* . (14)

The eddy viscosities of Egs. (13a) and (13b) can be written
in the following form:

<v ) 172
’ r
vir)~a, fd112 T ,
(15)
172
d(v,)
viry|r)=a, fdll'2 7 } ,

where the length / in Egs. (15) refers to the scale of varia-
tion of U, and U, while v;=v(r+1,¢t)—v (r,t) is the
turbulent velocity difference at distance /. Taking the
limit /— o in Eq. (15) defines the large scale eddy
viscosity: vy ~wvl.4q,. Notice that here, variations in the
time averaged velocity perturbation U(r) are expected
on a smaller scale than /.44, which is a manifestation of
the small scale nature of the forcing. The coefficient a,
is a constant in the inertial range (in homogeneous isotro-
pic turbulence a,=0.3), but could be dependent on the
scale / in general. It will appear, however, that in the
d /L —0 limit and for large enough Reynolds numbers,
the effect of this variation can be neglected.

In our case, U, is prescribed, so that Eq. (10) is not
necessary. Equation (11) can be simplified, in the limit of
large distance from the cylinder, by taking U,/U,,
9,U,/0,Uy, Uly /U,, and 9, P, to be small quantities. A
second approximation [6] is to take v as a constant across
a wake, which is equivalent to assuming that wake tur-
bulence is thoroughly mixed at a given distance from the
cylinder. Hence v(0|r)=v;,)(x), with /(x) the thickness
of the wake at distance x from a cylinder. These approxi-
mations lead to the equation for U,(r)=—U,(0|r):
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aU, U, vy=a,U.
0 3e Y 3> +EU,=0 . (16) From Egq. (1b), we obtain for the two-point correlation

Using the ansatz U,(r)= A (x)exp[ —y%/2l(x)?*], Eq. (16)
leads to

1di?_wh

YU, (17)

while integrating over y gives
Ui(x)=ayUyO(x)exp( —x /l)d /1(x) , (18)

where 1,=U, /£ and ay=a;/V2m=0.4 for a;~1;0(x)
is the Heaviside step function.

In the case of an isolated cylinder, the drag coefficient
& is zero and the eddy viscosity is due to the turbulence
produced by the wake. In this case, a mixing length ap-
proximation can be used by setting v, =a, U, with v, the
fluctuating velocity from wake turbulence and «, and
O (1) constant] and setting the typical eddy size to be
equal to /(x). Using Egs. (15) and (18), this leads to a
constant value of the eddy viscosity, so that (16) is a heat
equation and (17) gives rise to a parabolic wake profile.
Experimental data [6] show then that a,=0.6 and
v=0.131(x)v,(x), so that

I(x)=~0.25Vdx and v=U,d /32 . (19)

In the case of a bed of cylinders, both coefficients &, and
a, are likely to change. In the following analysis it will
appear that these constants do not act separately but
enter all relevant expressions in the product a a,.

In the case of an isolated cylinder, the eddy viscosity at
a distance x is just a,/(x)v,(x), with v, (x)~ U,(x). Inthe
presence of other cylinders, the problem is more compli-
cated because, at sufficient distances, the turbulence from
the other wakes becomes dominant. Hence it becomes
necessary to calculate the fluctuating velocity at scale /
from the “background” turbulent field, which requires in-
formation about the energy spectrum.

The problem is that, if the range of scales dominated
by the background velocity field is long enough, turbulent
fluctuations at scale / will receive contribution not only
from the spatial gradients of U,(r) at that scale, but also
from the turbulent fluctuations at scales larger than [
through the cascade mechanism. Let us introduce the
“structure function” for the mean field:

Ur=(U,(y +1)—U,(»]*)
=2[(AU0)AU(y))—(AU?)], (20)

where AU(y)=U,(y)—(U,), and longitudinal varia-
tions in the velocity field are neglected. If we assume that
in the presence of a single large scale energy source, the
turbulent fluctuations would arrange themselves in a Kol-
mogorov spectrum: v; </!/3, and we take U, <[5, there
are essentially two possibilities. If B>, at sufficiently
small scales, the cascade will dominate over the source of
energy from the mean field at that scale, and the energy
spectrum will tend to the Kolmogorov limit. If on the
other hand B<1 the opposite situation will occur and

for 8U
(AU(0)AU(y))=a}V7U%(d /L)

©_dx _ — 2 /472
Xfo l(x)exp[ 2x /le—y~/4l%(x)] .

21

Cascade dominance can be excluded in the following
way. Let I(x)x<x? be the leading order behavior for the
wake thickness in the range /,, <<l <<I44,, Where [, in-
dicates the thickness of the wake at which the back-
ground starts to dominate. Substituting this into
(AU(0)AU(])) gives the result, in the limit / /144, —0,

(AU(0)AU()) <exp[ —D (I, L,d)1>/1*21)]
so that B=(1+2y)"' . (22)

Substituting into Eq. (17) and keeping, for / >>/,, only
the contribution from the background, leads then to the
equation

I"Pey=(1-p)7! if B<i

[¥—y=3 ifg>1. (23)

dl?
—_—
dx

Equations_ (22) and (23) have the only solution:
y =(1+V'3)/2~1.37, which corresponds to 8~0.27 < 1;
we can then set v;~a,U;, with a, hopefully not too
strongly dependent on the scale /. The parameter a,, like
a,, should, however, tend to a constant in the “inertial
range” for the background fluctuations: [, <I <[y,
provided a wide enough range of scales is available. The
condition v; ~ U, has the physical meaning that the com-
ponent of the background turbulence that affects the
most a wake comes from cylinders that are close to the
one generating that wake. Including the turbulence of
the wake from the fixed cylinder, the expression for v,
must, however, be corrected to the form
vi~v,(x)*+a2U?, where I=I(x) and v (x) is the tur-
bulence from the wake. Since in the region in which
v,(x) is dominant the dynamics is essentially that of the
wake from an isolated cylinder, I can set v (x)=0.6U,(x)
as in the isolated cylinder case. Substituting into Eq. (15)
and using Eq. (18) gives then the result

v(0|r)= 2 exp(—2x /1)
172
aZ ! :lZdUIz,
AT Jarr—; , (4

where a=32a,a,a; is equal to one if a,, a,, and ay
have the same value they had in the isolated cylinder
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case. Substituting into Eq. (17) gives finally the equation =~ where
for the wake. It is better to introduce new rescaled vari- o,
ables 1 and F: - £ L
n o g~ A d (26)
x=legn/2 and I"=g""FL"/32, @3 In these new variables, the wake equation reads
J
e 172
F'in)= lg 43¢ 1+ “d e 4F(£)(1—e ~FM/AFO)y_ F(p)e —F(7)/4F(£) . Qn
(=g J e = 7 [4F (¢ 7 ]

Equation (26) can be solved iteratively and a good approximation can be obtained already at first order in the pro-
cedure. For g=0(1), or for small values of 7, it appears that the term in g ~*/3 dominates, so that the expression for F
that is appropriate to utilize in the right hand side of (27) is F(£)=g ~2/’¢. For g— w, the integral term dominates, so
that the right choice is F(£)=(4m)'/*n. The integral in Eq. (27) can then be calculated using the formula

fg’dx exp(—ux? —ax ~2)=1V'm /uexp( —2Vap) [9], leading to the result

Fim)~g ™" ["dg(e ™6+ A [1—e Vi VE1—VE/2)e Ve 2, (28)

where Ag=2\/1—rg for g=0(1) and Ag=(4ﬂ'g2)2/3 for
g— . This gives the estimate for the large scale eddy
viscosity vy =wv(l— o ):

YT=730 7 |(4mg)) 3,

For small 7, v('q)z(UOd/32)Vexp(—17)+4\/7rgn, im-
plying that the background fluctuations overwhelm the
wake velocity defect U, (leading essentially to the break-
up of the wake) at n~4V7mg)™!, e, at
x~LV2w/ (aa,)?, which is a distance of the order of the
mean separation among cylinders. At that distance, the
wake thickness is still below the mean cylinder separation
L: I(x)=1,~0.2L. The spectral peak of the turbulent
fluctuations is reached instead at a distance x ~1,, corre-
sponding to a wake width [~/ ~g'*L ~(L/d)"/*L
for g=0(1) and l 44 ~g'*L~(L/d)"’L for g— .
At that scale the eddy viscosity reaches its large scale
limit; notice that for L /d not too large, .44, is of the or-
der of the mean cylinder separation.

The interesting result of Eq. (29) is, however, that, con-
trary to one’s intuition, the eddy viscosity vy is inversely
proportional to the volume fraction of the cylinders:
(d/L)*. This is a consequence of the fact that, contrary
to three dimensional wakes [6], two dimensional ones
remain turbulent at all distances if they are turbulent at
the beginning. The basic mechanism for the divergence
of v is that when the mean distance among cylinders in-
creases, the drag length /, grows as well, so that at any
point, one feels the turbulence from an increasing number
of cylinders upstream. Notice that for this reason the
limit for d /L —O0 of this problem does not coincide with
the isolated cylinder case, and actually is badly behaved,
with the eddy viscosity going to infinity. Notice, howev-
er, that from Eq. (21), this corresponds to a fluctuation
level Uy, /U (d /LY, which vanishes in the limit, so

g=0(1)

g—»w .

(29)

that the perturbation analysis is still valid.

In most situations of practical interest the cylinders are
of finite length and the fluid is bounded by some surface.
An interesting example could be that of a flooded forest,
in which there is a bottom at some depth 4. This gen-
erates contributions to the drag £ and the turbulent ve-
locity. Using the logarithmic profile law [6] the correc-
tion to the drag coefficient is given by

«U,

8§a=-——h nth /rg) ° (30)

where k=0.4 is the Von Karman constant and 7, is the
length scale of the roughness on the bottom. The typical
velocity of the turbulent fluctuations generated by the
friction against the bottom is, in the same approxima-
tions, vy ~0.4U,/h[In(h /ry)], which, by itself, would
lead to a contribution to the eddy viscosity:

Using Egs. (30) and (26) in (29) leads to the obvious result
that for L >h the eddy viscosity stops growing with L
but tends to the value given by Eq. (31). In this limit, at
sufficient distances, the bottom becomes the dominant
factor determining the wake profile. In particular, for the
range [/(x)<h it becomes necessary to use information
about the energy spectrum of bottom turbulence [10].

IV. CALCULATION OF TRANSPORT COEFFICIENTS

The expressions for the wake profiles that have been
derived in Sec. III can be used, together with the results
of Sec. II, to estimate the diffusion coefficients for a pas-
sive scalar in terms of the important quantities of the
problem, i.e., d, h, and L. Equation (9) in particular is
simplified by using Eq. (18) to express U, in terms of / (x).
In these approximations, Eq. (9) reads
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(Ax(2)?),

Equation (32) gives the longitudinal diffusion due to the
presence of the wakes. From the analysis performed in
the former section, it appears that the wake shape can be
approximated, in rescaled variables, by the expressions
F(n)~2l/2ﬂ'““g_1/6n and F(n)=(47)!3y valid, respec-
tively, in the two regimes g =0 (1) and g — . Substitut-
ing into (32) and using Eqgs. (25) and (26) gives the result

174
d t
2 ~ ’ ’
(Ax(1)?), =~ a; UoL [ 'dr'D2Ut' /1)
(33)
where for g=0(1) and B,

=201 2 L0 80t (L/d)""" for g—oo. The
term D is a normalized d1ﬁ'us1on coefficient, which tends
to a constant value at times of the order of /. /U,:

D(x)= [ "dneerfc(Vy) (34)
0

lerfe(x)=(2/V/m) /e e~"dt is the complementary
error function]. Using the result D(x — «)~0.84

and Eq. (33) gives for the diffusion coefficient D,
=lim,_, . {Ax%(t)) /t:
d z
Dwzc 2 UyoL , (35)
aagL

where C=3.5, z=1 for g=0(1) and C=4.2, z=1 for
g— . The turbulent diffusivity can be approximated
with the expression calculated in the preceding section
for the eddy viscosity [see Eq. (29)]:

~C'(a’a,L /d)z'Uyd , (36)

where C'=0.01, z'=1 for g=0(1) and C'=0.007,z'=1
for g— o. This should be compared with the result in-
side the wake of an isolated cylinder:
D;~Uyd /32=0.03U,d. Notice that both longitudinal

and transversal diffusivity depend on the same combina-

J

— S~ t , o
(Ax(e7), ~187V2may Uod® [ ‘dr’ [ “dx exp(—x/1;) [f

Analysis of Egs. (32) and (38) shows that diffusion ap-
proaches normality, on a time scale of the order of
1¢/U,, with the skewness ratio 5= (Ax3) /{Ax?)32 de-
caying like t ~!/2.

The analysis carried on so far disregarded the effect of
trapping by the close wake regions. It is important to es-
timate the limit of this approximation, concerning espe-
cially the prediction of normal diffusion on time scales of
the order of the transit time over a length /.. If the dis-
tribution of residence times in the trapping regions has a

=~V8ra}(Uyd A fdt f dt"exp[Ug(t'—t")/1 ]fU v
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_ Xl THxexp(—2x /1) . (32)

tion of adjustable parameters &=a’a &

The analysis leading to the expression for the eddy
viscosity given by Eq. (29) showed that the inhomogenei-
ty of the turbulent field did not play a role at large scales.
The same result can be obtained in a more intuitive way,
modeling turbulent diffusion as diffusion from quenched
disorder [11]. If turbulence were homogeneous and iso-
tropic, diffusion could be estimated by an eddy diffusivity:
leaqyV> Where I 44, is the scale of the energy containing ed-
dies. The effect of nonhomogeneity is to bring about a
distribution of values of /.44,. Dividing the space into
boxes having the size of the energy containing eddy at
that point, a tracer particle will be scattered to a neigh-
boring box in an eddy turnover time. This leads to the
estimate for the mean diffusivity:

N~l,—2t,~ letz l
D~ Ax? . ? I |
At S N;t; th }

ENilizti
zN ra

3

(37

where N; is the number of eddies of type i, which have
size /; and turnover time ¢;, while P;=N, /3 ;N;t; is the
actual probability to find a tracer in an eddy of type i.
However, the place where the nonhomogeneity occurs is
the near wake region, where the eddies are smaller and
faster and their contribution is killed in the weighed sum
of Eq. (37).

Analysis of Egs. (35) and (36) shows clearly that longi-
tudinal diffusion, due mainly to the wakes, dominates
over the transverse part, due to turbulence. This result is
strengthened by the fact that the very near wake has not
been considered in the analysis.

The results from the Appendix allow one to estimate
also the skewness of the concentration profiles; in the
same approximation of Eq. (32), Eq. (A3) leads to the ex-
pression

x/Uy+t—t 2
v dt”l1 N Uyt exp(—Uyt" /1) | . (38)
X 0 )

finite mean, a simple set of equations, including the effect
of trapping, can be introduced:

(8p,/03t)=(p—p) /7
(8/3t+Uy0/8x —V-D-V)p

(39)

=Ctr(pl_p)/Ttr .

In these equations, D is the diffusion tensor with longitu-
dinal and transversal components given by Egs. (35) and
(36) (and cross terms equal to zero), p, is the concentra-
tion of contaminant in the trapping regions, ¢, is the
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volume fraction occupied by these regions, and 7, is the
trapping time. Equation (39) can be solved for a point
source at time zero in the right hand side of the second of
(39), in terms of moments of p and p; with respect to x.
It is then a matter of lengthy but straightforward algebra
to show that for times ¢ > 7, and ¢, << 1

(Ax?)~(D,+2¢, Ukt )t ,

(40)
(Ax3) =6¢c, Uyry(D, +5U37 )t ,

which indicates that the condition for the trapping effect
to be negligible in the calculation of the skewness is
Ty <l¢/U,. Notice that the trapping effect produces a
correction also in the diffusion coefficient; comparing
with Eq. (35), we see that the trapping effect can be
neglected only if ¢, Uy7,, <(d /L)/*L. [Incidentally, the
same reasoning used before to illustrate how, in our case,
turbulence inhomogeneity does not affect the eddy
diffusivity, shows that the trapping regions could become
dominant in Eq. (37) due to the divergence of the corre-
sponding scattering time t;~7,.] Since ¢, <(d /L),
while 7, is independent of d /L, it appears that the condi-
tion for the trapping effect to be negligible, both in the
analysis of diffusion and of skewness, is that the cylinder
separation be large. To understand the exact range of ap-
plicability of this approximation requires, however,
knowledge of the parameters 7,, and (L /d)%c,,, which is
not provided by the present model.

V. DISCUSSION

The analysis carried on in this work has permitted me
to obtain some predictions on the scaling of the longitudi-
nal and transverse diffusion coefficients with respect to
the volume ratio of the cylinders: (d /L)®. The most im-
portant result is the divergence of the diffusion
coefficients in the d /L —0 limit. The actual magnitude
of these coefficients still depends on a single free parame-
ter &, which contains the deviations from the isolated
cylinder case, in the drag, in the eddy viscosity depen-
dence on the turbulent velocity, and in the ratio between
turbulent velocity and mean velocity differences. These
results provide an interesting example of the long dis-
tance character of the hydrodynamic forces in two di-
mensional configurations. In fact, also in the case of lam-
inar wakes, a similar situation occurs. To see this, it is
sufficient to remember that, because of dimensional re-
quirements, laminar wakes in two dimensions can depend
on the cylinder radii only through logarithms [12].
Hence, making in Eq. (31) the substitution d —v,/U,,
with v the Newtonian viscosity, and taking
I(x)~V vex / Uy, leads to the approximate scaling for
the wake diffusion: D, < U,L.

It must be stressed that this model is based on some as-
sumptions and approximations, which are not completely
under control. In particular, it is not clear whether a
condition in the form U; ~v, [see Eq. (20) and paragraph
J
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preceding it] is acceptable, when there are turbulent fluc-
tuations at scales larger than /. A similar problem occurs
when analyzing the dynamics of U,(r|r’) at distances
such that U, is smaller than the turbulent fluctuations;
the difficulty arises at the moment of separating out an
eddy viscosity containing the effect of eddies at scales
below /(|r—r'|), and also because the effect on U, of the
larger scale energetic eddies (which are going to be
present unless [r—r’| > I,) is not taken into consideration.
The basic hope is that the errors generated by these ap-
proximations be bounded in some way, so that, at least
in the limit d/L —0, it could be possible to reabsorb
them in a redefinition of the free constants.

It would be interesting at this point to investigate the
practical relevance of the asymptotic regime considered
in this paper to the situation in typical environments, in
which the ratio d/L and the cylinder length are both
finite. The first thing that occurs away from the limit
d /L —0, as is apparent from Eq. (40), is that the contri-
bution to diffusion coming from the effect of trapping
ceases to be negligible with respect to that coming from
the inhomogeneity of the large scale velocity field. In
particular, the contribution to the non-Gaussian charac-
ter of the diffusion process produced by these regions be-
comes dominant. This suggests a crossover between two
completely different mechanisms of diffusion at some
finite (and probably small) value of d /L. As far as the
finite length of the cylinders is concerned, the basic effect
is the presence of boundary layers coming from either the
ends of the cylinders or from any surfaces bounding the
flow. In this case, there could be a regime in which the
longitudinal diffusion is still produced by the wakes,
while the transverse part is due to turbulence from the
boundary layers. These issues are both subjects of work
in progress.
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APPENDIX

The same line of arguments used to derive the diffusion
coefficient given in Eq. (9) can be used to calculate the
skewness:

(Ax (1)) =(x (1)) +2{x,(1))>=3(x,; (1)) {x,(1)?) .

This quantity depends on the three-point correlation for
the density, { nnn ), which can be expressed in the follow-
ing form:

(n(r)n(ry)n(ry)) =7 3P(r;,1,|r;)+ A [P(r,|r,)8(r; —13)+ P(r,|r;)8(r; —1,) + P(r,|r;)8(r;—15)]

+37i5(l‘1—r2)5(l’1*r3) »

(A1)
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where P(r,,1,|r;) is the conditional probability of finding a cylinder in r given the presence of a cylinder in r, and
another one in r,. [This quantity satisfies the symmetry relation: P(r;,r,|r;)=P(r,,15|r,)=P(r,,1;|r;) and has the lim-

it for |r,—r,| > 00: P(r;,1,|r;)=P(r,|1;)P(r,|r;).] Substituting Eq. (8) into the expression for the wake dependent part
of the skewness gives the result

(Ax(t)3>w=fotdtldtzdt3fd2r1d2r2d2r3[ﬁ3w3(r1,r2,r3)+371'2w2(r1—r2)8(r2—-r3)+3ﬁ8(r1—r2)8(r2—r3)]
XU (ry|x(1, DU (1,]5(2,)) U (xr5]1x(23)) (A2)

where w,(r,—r,)=P(r;|r,)—1 and w;(r,,1,,13)=P(r,1,|r;)+2—[P(r,|ry)+P(r,lr;)+P(r;|r,)]. As in the case of
w,, if the distribution of cylinders is sufficiently random, w; is nonzero only for separation distances well below L, so
that only terms linear in 77 survive in (A2), leading to the expression

X X X ©
(Ax(t)3)w218ﬁfoxmdx1f0 ‘dx2f0 “dxy [ dx [T dyUs U, (U, (e Uy () (A3)

Again, the contribution from the very near wake has been disregarded and this would have produced a divergent contri-
bution. At the same time Eq. (A3) is dominated by the far wake region provided / (x) < x* with a < 1. The analysis car-

ried on in Sec. IV shows, however, that the very near wake contribution to transport, disregarded in (A3), could become
dominant away from the dilute limit.
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